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Block 20 cont'd

Most physical phenomena are nonlinear in nature and exhibit the compli-

cated and seemingly random behavior known as chaos. Studying chaotic

behavior in nonlinear systems requires numerous computations in order to

simulate the behavior of such systems. The Standard Map Machine (SMM)
was designed and implemented as a special computer for performing these
intensive computations with high-speed and high-precision. SMM's impres-
sive performance is due to its simple architecture specialized to the numerical
computations required of nonlinear systems. This report discusses the design
and implementation of the Standard Map Machine and its use ;n the study
of nonlinear mappings, in particular, the study of the standard map. -!
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ABSTRACT

Most physical phenomena are nonlinear in nature and exhibit the compli-
cated and seemingly random behavior known as chaos. Studying chaotic
behavior in nonlinear systems requires numerous computations in order to
simulate the behavior of such systems. The Standard Map Machine (SMM)
was designed and implemented as a special computer for performing these
intensive computations with high-speed and high-precision. SMM's impres-
sive performance is due to its simple architecture specialized to the numerical
computations required of nonlinear systems. This report discusses the design
and implementation of the Standard Map Machine and its use in the study
of nonlinear mappings, in particular, the study of the standard map.
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Chapter 1

Introduction

There exists in nature a wide variety of phenomena that exhibit complicated
and seemingly random behavior. Examples abound all around us - just take
a moment to gaze at the cloud patterns in the sky or swirl the cream in your
cup of coffee. Useful theoretical descriptions of these complex phenomena
have in the past proven difficult to construct due to the nonhnearity of the
mathematical equations which model these physical systems. But in recent
years, much progress has been made in this area of dynamics with the use of
high-speed digital computers. These powerful tools enable us to identify and
explore ordered patterns in the behavior of systems by combining numerical
experiments with mathematical analysis. We have found that many physical
systems exhibit an incredible spectrum of dynamical behavior ranging from
the ordered to the unpredictable. The technical term that is used to describe
this irregular. unpredictable behavior of deterministic systems is chaos. It
may not be surprising that dynamical systems with many degrees of freedom
can behave in an unpredictable fashion for all practical purposes, but what
is exciting is that chaos manifests itself in even systems with few degrees
of freedom; the observed behavior appears just as complicated as the many
degrees of freedom cases.

For a digital computer to simulate such systems, the behavior must be ex-
pressed in terms of a discrete process that allows the computer to perform
the computation in distinct steps. Such a discrete process is essentially an
iterated mapping, representable by a set of difference equations. In other



words, discrete mappings as well as continuous flows are represented as map-

pings from a computational point of view. For this reason, as well as the

reason that mappings are interesting systems in and of themselves, it is im-
portant to gain a better understanding of these discrete systems in the study
of chaotic behavior. One mapping of particular interest is the standard map.

Although just a two-dimensional set of difference equations, it can exhibit
complex chaotic behavior and can be used to represent a host of real physical
systems.

In order to examine the behavior of such mappings., it is often necessary to
perform large numbers of iterations of the equations of the system. Because

of these computational requirements. I have designed and implemented the

Standard Map Machine. a special computer to perform the mappings with

high-speed and high-precision. It was designed as a backend processor that

could be solely dedicated to the iteration of nonlinear mappings to study

chaotic behavior. The prototype implementation performs at an average

rate of about 2.5 MFlops for the class of problems that it was designed to
solve, dissipating approximately 40 Watts of power. This machine was used

to examine the behavior of the standard map by computing the Lyapunov
exponents for various initial conditions. These results and the novel computer
design and implementation are presented in the following sections.
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Chapter 2

Nonlinear Mappings: The
Standard Map

A mapping is a discrete representation of a dynamical system, consisting of a
set of difference equations. A nonlinear mapping is a mapping that consists
of a set of difference equations that contain nonlinear terms. In particular, we
would like to consider nonlinear mappings of few dimensions. The study of

such systems is of great interest because of several reasons. Simple nonlinear
mappings represent numerous simple physical systems that are all around
us, and as yet are still not well understood. A variety of techniques have

been developed for studying few dimensional systems that help shed light
on the nature of chaos in such systems. Furthermore, the study of simple

nonlinear mappings brings us insight about the complicated behavior of many
dimensional systems.

One example of such a mapping is the standard map. The standard map is
a set of two difference equations:

X+I= (zX + yn+I) mod 27r (2.1)

y,+ = (y, + k sin(x,)) mod 2r (2.2)

The nonlinearity of the system is introduced by the sin(z,) term, and can be
varied by changing the value of the parameter k. Note that the calculation of

the state variables modulo 2r exploits the natural periodicity of the system.

3



This can be seen by the fact that incrementing the current state variableq by
2r changes the next state variables by precisely the same amount.

Perhaps the name "standard map" is derived from the fact that this simple
mapping can be used to represent a large number of physical systems. It
provides an approximate description to the general class of one-dimensional
nonlinear oscillators subject to periodic perturbations. One such physical
system that is described by this set of equations is a rigid rotor periodically
perturbed by a person kicking it [6]. The rigid rotor can be represented by
the standard map if we let x, represent the angular position of the rotor at
the time of the nth kick. y, represent the angular velocity of the rotor just
before the nth kick. and k sin(x,) represent the strength and direction of the
kicks.

In investigating the behavior of nonlinear mappings, it is useful to observe
the evolution of the state of the system in phase-space, given a set of initial
conditions. For the case of the standard map, we would like to observe the
trajectory of the phase-point (xn,y,), given an initial state (xo,yo) and a
value for the parameter k. The phase-space portraits of the standard map
for the initial conditions x0 = .05, yo = .05, and various values of k are shown
in Figures 2.1 through 2.4.

As the coefficient k of the nonlinear term increases, the resulting phase-space
portrait exhibits more and more complex behavior. For k = 0, the phase-
space portrait is a straight line. For small values of k, in this case k = .2, the
phase-space portrait is a curve. In both of these cases, the trajectory of the
phase-point is regular and predictable. The system is stable for these initial
conditions and the small value of k. For larger values of k, in this case k = 1,
the phase-space portrait exhibits beautiful patterns of regions of order and
regions of disorder. The dark regions of disorder are chaotic. For very large
k, the portrait seems to be entirely random. Note that for larger values of
k, the system exhibits large regions of instability for these initial conditions.

There is much evidence that indicates the long-term behavior of chaotic sys-
tems cannot be simply determined by just studying short-term behavior [10].
Given the rich behavior that can arise in these systems, we would like to study
the evolution of different phase-points for long durations. For instance, one
intriguing problem involves the standard map with a varying k value. Sup-
pose we start with initial conditions xo, yo, k0 such that this orbit is regular,

4
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but for initial conditions xo. Yo, k1, we get a chaotic orbit. If we slowly vary
k from k0 to k, and back to k0 while iterating the map, is the final orbit
for k = k0 regular or chaotic? The answer to this question is not known in
general.

However, such investigations require large numbers of iterations of the map-
pings. Fast computing facilities would be necessary, but most conventional
machines are too slow and supercomputing power is costly. Due to these
intensive computational requirements, a special computer was designed to
perform the computation of nonlinear mappings with high-speed and high-
precision. This special computer is the Standard Map Machine.

9
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Chapter 3

A Special-purpose Computer:
The Standard Map Machine

3.1 Initial Considerations

The Standard Map Machine (SMM) was designed as a solution to the com-
putational problem of studying the long-term behavior of simple nonlinear
systems. A number of initial considerations were taken into account in de-
signing this machine. These included size, precision, availability of parts, and
kinds of operations needed to be performed. In terms of size, it was desired
that the machine would be relatively small and simple, something that could
be used as a backend processor to a host computer, such as a conventional
workstation, and something that could be implemented in a relatively short
amount of time. With regard to precision of numerical calculations, it would
be necessary to be able to compute with 64-bit double precision accuracy
in order to minimize roundoff errors that could potentially be fatal for large
numbers of iterations of a mapping. Concerning the availability of parts,
the main computational unit was chosen to be a set of Weitek floating point
chips, consisting of an ALU and a multiplier. In terms of the computations
that needed to be performed, the machine needed to be able to perform
standard functions that were common in simple nonlinear mappings.

To determine the necessary functionality of the machine, we consider the

11



class of nonlinear systems that SMM would need to compute: simple non-
linear mappings. A good example to use would be the standard map, de-
scribed in the previous chapter. It was evident from observing this pair of
difference equations that addition, multiplication, modulo n, and elementary
trigonometric functions needed to be performed. Addition, multiplication,
and modulo n could all be performed as straightforward standard operations
using the floating point arithmetic units. In order to compute trigonomet-
ric functions. a Taylor series approximation with Chebyshev economization
was used to perform the calculation with the fewest number of terms for the
necessary precision [9]. Thus, the sine function in the standard map can be
calculated using the following series expansion:

sin(x) = x(si + x 2(s3 + X2(s5 +

X'(S7 + ;I](s9 + xr(s 1 + S1312)))))) (3.1)

The numerical coefficients are given in Appendix C. It was determined that
for 64-bit IEEE double precision accuracy, the sine series approximation re-
quired seven coefficients. Note that the sine polynomial expansion is ex-
pressed such that the number of multiplications is minimized, thus minimiz-
ing the latency for the computation. Such a polynomial approximation is the
kind of expression that SMM would need to be able to compute efficiently.

3.2 Architectural Design

Given these initial design considerations, the architecture of SMM was config-
ured as in Figure 3.1. The machine has two sections: the computation unit
and the microcontroller. The data path specialization of the computation
unit and the instruction pipelining of the microcontroller result in maximum
utilization of the multiplier/ALU floating point module.

3.2.1 The Computation Unit

The computation unit consists of four parts: the data memory, the register
file, the multiplier/ALU module, and the feed-through latch. These sections

12
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are connected together by 32-bit data paths, providing both single and double
precision capability. Data is read from and written to SMM from the host
computer via an interface to the data memory system. Values that are to be
used for a computation are written to the fast dual-port register file and then
fed into the multiplier/ALU unit. The multiplier/ALU component is made
up of a Weitek 1264 64-bit IEEE floating point multiplier and a Weitek 1265
64-bit IEEE floating point ALU. Normal operation of the floating point chips
is selected to be in pipeline mode to maximize throughput. In this mode,
a new 64-bit multiplier operation can be performed every four clock cycles
with a latency of ten clock cycles, while a new 64-bit ALU operation can
be performed every two clock cycles with a latency of twelve clock cycles.
(The minimum clock cycle time for the Weitek chips is 60 nanoseconds.)
The results of floating point operations are then sent to the data memory,
register file. feed-through latch, or any combination of the three. We try
to put the result in the register file if it is to be used iii a later operation.
The data memory is used if there are currently not enough locations in the
register file and the value is not needed immediately. If the result is to be
used as an input to the multiplier/ALU module immediately after it has been
calculated, it is fed directly to the feed-through latch. The result must be
written to data memory if it is to be sent to the host computer.

The feed-through latch is an additional data path feature developed to opti-
mize the computation of polynomial approximations of nonlinear functions
such as the sine function. From the serios expansion in equation 3.1, we see
that such functions are computed serially for a small number of execution
units. (If there are a large number of execution units, the polynomial can
be rewritten so that the terms can be calculated in parallel, independent
of each other.) Because of this, the computation of mappings such as the
standard map is a serial computation, since the calculation of both x and
y values depends on the value of the sine function. The feed-through latch
takes advantage of the serial nature of the calculation by allowing the results
of computations flowing out of the floating point unit to be fed directly back
into the input of the floating point unit without passing through the register
file. Thus, data values can remain in the data paths for repeated computa-
tions without ever having to be written back to the register file, reducing the
latency of the computation.

Besides numerical data calculations, the Weitek unit is also used to perform

14



conditional tests, such as comparing the values of two numbers, and con-
verting floating point numbers to integers for data memory write address
calculations. Write addresses are calculated such that the low eight bits of
the resulting integer are sent to the memory address register and latched in
as the high eight bits of a memory write address. This allows fast calculation
of page addresses to which to write the results of data computations. Fur-
thermore, the amount of data memory that can be used to write results is not
limited by the microcode memory size, as would be the case if write addresses
were not calculated but rather were fixed by the microcode instruction. Data
memory read addresses are fixed by the microcode instruction because much
of the data memory. where the final results of computations are stored until
being sent to the host, will not need to be read for the kinds of applications
that SMM will run, and direct addressing provides better latency so that
data can be read immediately upon execution of the read instruction.

3.2.2 The Microcontroller

The microcontroller consists of a microcode loader, the microcode memory, a
variable-length pipeline register. and a condition code selector. Programs for
the computer are assembled into microinstructions on the host machine and
downloaded from the host through the microcode loader, which then stores
the microinstructions into the micromemory. When the microcontroller is
operating, the program stored in the microcode memory is executed. The
instruction located at the current microaddress is read from the memory and
sent to the variable-length pipeline register. The instruction is clocked in
through the register, resulting in the proper control signals being sent to the
computation unit as well as the microaddress of the next instruction being
sent to microcode memory. The length of the pipeline is different for each
control signal so that each of the signals coming out of the microcontroller
arrives at the appropriate module at the right time. In addition, the length of
the entire instruction pipeline is varied by the microinstruction, depending
upon whether the multiplier or ALU is being activated. This variation is
necessary because the pipelined latency of the multiplier differs from that
of the ALU. The condition code selector sends branching instructions to
the microcode memory depending on the current state of the machine and
the result of conditionals computed by the computation unit. Thus, data

15



dependent instructions are permitted.

A 96-bit instruction word length was chosen. The function of each instruction
bit is described in Appendix A. The long word instruction format allows
parallel execution of the subsystems of the computation unit. Instruction
flow is as shown in Figure 3.2. One instruction word can be executed

rad. 1 I wr ite.1

daaexecute- 2 operand d 1,-2

ead- wr it 
data e xc- operand data

Figure 3.2: Model of Instruction Flow

write data to register I cmpute operation Iselect conditionals
file from SRAM and write data for branching

memory computation branching

Figure 3.3: Functionality of an Instruction Word

every clock cycle. Since each word can perform a floating point operation,
the microcontroller can send out a new floating point operation every clock
cycle. This performance is possible because of the variable-length hardware
pipeline register. As mentioned above, the microcode dynamically alters the

16



length of the pipeline so that the control signals arrive to the appropriate
subsystem modules at exactly the right time. Furthermore, the hardware
pipelining easily facilitates multiple branching by guaranteeing that the write
address for the result of the data operation will not disappear until the result
has been written, despite the interleaving of instructions.

Each instruction word can be described functionally as shown in Figure 3.3.
The memory field is used to write a data value stored in data memory to
the register file. The computation field is used to perform an operation
using the multiplier/ALU module. The branching field is used for conditional
branching.

3.3 Implementation

The design implementation uses standard off-the-shelf parts, primarily Ad-
vanced Schottky TTL technology. Single-port SRAM is used for both the
data memory system and the micromemory system. There are 2 K words of
micromemory locations, 8 K words of data memory locations, and 64 words
of register file locations, where an instruction word is 96 bits in length and a
data word is 32 bits in length. Four-level pipeline registers that combinato-
rially select which pipeline level the resulting output comes from are used to
implement the microcontroller pipeline. The system clock, write pulses, and
latch pulses are all derived using a single delay line. Schematics are given in
Appendix B.

3.3.1 Timing

Timing analysis of the machine is shown in Appendix B. Positive edge timing
is used. Maximum and minimum propagation delays are taken into account,
as well as the tolerances on each tap of the delay line. The minimum clock
cycle time is 62.5 nanoseconds as limited by the critical data path latency
from the output of the Weitek unit through the feed-through latch back to
the input of the Weitek unit. As a result, a 70 nanosecond delay line was
chosen for the initial implementation. Reading of data is done on the earlier
section of the clock cycle and writing of data is done on the later section.

17



3.3.2 Construction

The computer was built on a 366 mm x 220 mm wire-wrap board with
ground and voltage planes to reduce noise problems. A picture of the com-
pleted hardware is shown in Figure 3.4. .lpF bypass capacitors were soldered
directly between Vcc and GND on dual-in-line chip packages and 47PF elec-
trolytic bypass capacitors were distributed all over the board. In addition,
4.7pF tantalum capacitors were connected between Vcc and GND near the
register files and WVeitek chips because of their extra sensitivity to noise.
Clock signals were fed through multiple buffers to avoid fanout and ground
bounce problems. Twisted pairs were used for some of the longer wires to
reduce noise. Several of the wires required termination because of heavy
undershoot resulting from transmission line bounce [8]. Some of the wires
which were connected to CMOS inputs were also attached to TTL inputs
to reduce undershoot by taking advantage of TTT input clamping diodes.
The current implementation uses a 100 nano -cond delay line to produce the
system clock, resulting in a 100 i ,iiosecond clock cycle time. Some minor
adjustments of the wiring that have not yet been done at this time would
reduce the transmission line noise tYi.-, is present and allow a faster cycle
time.

3.4 Use

3.4.1 Host Interface

The Standard Map Machine was implemented to communicate with an HP
9000 Series 300 Computer system [5]. The HP 98630 Breadboard Interface
was used to construct memory map hardware to communicate between the
backend processor and the host machine. The asynchronous nature of the
protocol requires that the processor be in a waiting state or that it be stopped
in order for data to be transmitted to and from the processor and the host.

The waiting state is a state, during which the SMM clock is still running,
in which SMM promises not to access the data memory, so that the host
machine can access the memory safely without worry of bus contention with

18
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SMM. This state can be written into a program so that data can be sent
to and from the host during the execution of a program. Another signal is
used to tell SMM when the host is done accessing the SMM memory so that
SMM knows when it is safe to jump out of the waiting state and continue
processing.

Another way that the host can read and write data to SMM is to send an
interrupt signal to SMM, stopping its system clock. In this state, the machine
is no longer running and so data can be transmitted between SMM and the
host. In addition, programs can be loaded into the microcode memory since
the microcontroller has stopped running. Note that programs cannot be
loaded if SMM is running (i.e. the system clock is on). To start SMM, a
start signal is sent to SMM, which sends the starting instruction word from
the microcode loader to the instruction register and enables the SMM clock.

Software was written to allow the user to interface with SMM in Scheme.
Commands that are available to the user are listed in the Appendix E. These
commands give the user great flexibility in the operation of the machine as
well as easy access to the data memory system where the -esults of compu-
tations are stored.

3.4.2 Programming the Machine

An assembler was written by Brian LaMacchia that converts register-transfer
code to the proper instruction bits. A detailed explanation of the assembler
operation is found in Appendix F. Although there is currently no software
that allows the user to program in a high-level language, it is believed that ex-
isting software would not be difficult to modify to allow such a programming
environment.

3.5 Performance

The inherent maximum performance of any machine using the Weitek 1264/65
chip set is 4 MFlops for a multiplier operation, clocking the machine with the
minimum clock cycle time of 60 nanoseconds. The maximum performance on

20



SMM running at the maximum clock rate of 16 MHz is approximately equal
to this absolute maximum. Actual performance of this computer for the class
of problems it was designed to solve is about 4 MFlops and is limited by the
throughput of the multiplier due to the serial nature of the computation. The
current hardware is running at a slower clock rate of 10 MHz, thus giving a
performance of about 2.5 MFlops for the single board machine. In addition,
since almost all of the computations are performed on the board itself apart
from the host machine, these performance levels are sustainable for long pe-
riods of time. unlike the floating point accelerators and math coprocessors
that are commonly used to speed up calculations in conventional machines.

This high performance is achieved by the specialization of the data paths to
numerical computations as well as the specialization of the data path topol-
ogy to the serial computational nature of the problems that the computer was
designed to solve. Furthermore, interleaving of instructions is maximized by
the use of variable-length hardware pipelining. thus maximizing the possible
throughput of the machine. The overall advantage in the SMM design is that
SMM can take large portions of real problems, in the form of microcode pro-
grams, and quickly sequence through the given set of instructions to perform
numerous computations without ever needing the host to control the flow of
data on the board during the computation.

With respect to computations of mappings such as the standard map, the
pipelined operation of SMM allows simultaneous calculation of up to three
mappings. This is achieved by using the natural multiplier pipeline length
of three operations. This parallelism is well suited to studying the behavior
of two-dimensional mappings because it allows us to watch the divergence of
nearby trajectories by integrating three trajectories simultaneously.
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Chapter 4

Studying the Long-term
Behavior of the Standard Map

There are a number of interesting applications in which SMM would be use-
ful as a high-performance cost-effective instrument for studying nonlinear
dynamics. One problem of interest is studying the long term behavior of the
standard map. We would like to determine whether or not the behavior is
chaotic for a given set of initial conditions. Chaotic orbits are very sensitive
to initial conditions - small changes in the conditions can produce drasti-
cally different results. In order to measure the degree of sensitivity to initial
conditions and thus determine whether an orbit is chaotic, we estimate the
average Lyapunov exponent.

The average Lyapunov exponent is a measure of the exponential rate at which
two nearby trajectories diverge, and hence it is a useful way of determining
whether or not an orbit is chaotic. The exponent is defined to be

In d
A = lim do (4.1)t-. t - to

where d is the distance between the trajectory and an infinitesimally nearby
test trajectory, and t is the number of iterations. A positive Lyapunov expo-
nent is an indication of exponential divergence, and thus chaotic behavior.
For an n dimensional system, there can be up to n distinct exponents. These
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exponents are paired in Hamiltonian systems - for each nonnegative expo-
nent, there is a corresponding nonpositive exponent of the same magnitude.
This implies that for an m degrees of freedom Hamiltonian system, there can
be at most rn positive exponents [10].

The standard map is a two-dimensional Hamiltonian system. Its area-preserving
nature can be seen by noting that the Jacobian for the mapping is equal to
one. Since it is a one degree of freedom system. it has at most one positive
Lyapunov exponent. If there is no positive exponent, then both exponents
are zero and the behavior of the trajectory is regular. If there is a positive
exponent. then the behavior is chaotic.

We estimate the largest Lyapunov exponent for various trajectories of the
standard map in order to determine whether or not the trajectories exhibit
chaotic behavior. This exponent must be either positive, indicating chaotic
behavior, or zero. indicating regular behavior. It is not possible for the largest
exponent to be negative since the standard map is a Hamiltonian system. A
negative exponent is an indication of contraction in the phase-space, but
since the system is area-preserving, there must be a direction in which the
phase-space is expanding so that the area is preserved. In this direction,
the exponent must be positive indicating the expansion of the phase-space
in that direction.

We compute the estimation of the largest Lyapunov exponent of a reference
trajectory by iterating the variational equations along with the trajectory,
thereby linearizing the system in the neighborhood of the reference trajectory
and measuring the local divergence of nearby trajectories. The variational
equations for the standard map are given in equations 4.2 and 4.3.

dxn+1= dzn + d,+ 1  (4.2)

dyy+l = dy. + k cos(xn)dxn (4.3)

From the variations, the distance d between nearby trajectories is given by

d = /&2 + dy2 (4.4)

The exponent can then be calculated using equation 4.1, where t is equal
to n. The limit is approximated by averaging the resulting local Lyapunov
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(x o.yo) I k iterations _ Lyapunov exponent

(.05.05) 0.2 503407000 between 0 and 4.14e-8
(.05..05) 0.6 1069280000 .073
(.05,.05) 1.0 551254000 .105
(.05..05) 2.0 43459500 .436
(1.0,1.0) 0.2 890956000 between 0 and 2.06e-8
(1.0,1.0) 0.6 554457000 between 0 and 3.51e-8
(1.0.1.0) 1.0 709709000 between 0 and 3.14e-8
(1.0,1.0) 2.0 81642500 .437

Table 4.1: Estimation of Lyapunov exponents of the Standard Map

exponents over long numbers of iterations to get an accurate estimation of
the global exponent for that orbit. Periodic renormalization of the varia-
tions after several hundred iterations is performed due to the exponential
growth of the distance for chaotic orbits. This can be simply done because
of the linear nature of the variational equations. The Scheme program and
SMM assembler code used to do these calculations are found in Appendix D.
The initial variation is chosen as dx = 1.0 and dy = 0.0. Its orthogonal
counterpart is not also calculated because experience has shown that both
vectors almost always converge together, after enough iterations, to point in
the direction of the greatest rate of expansion of the phase-space. The rare
exception occurs when the initial variation points exactly in the direction of
fastest contraction, in which case the resulting Lyapunov exponent will be
negative, so that it will be clear that the positive exponent is the negative of
that result.

Two trajectories were briefly studied. Although it is not possible to generalize
from so few cases, it is interesting to examine what the results may suggest.
The first trajectory started with the initial conditions z0 = .05, yo = .05.
The second trajectory started with the initial conditions xo = 1.0, yo = 1.0.
The results as computed for various values of k are given in table 4.1, along
with the number of iterations performed.

Preliminary analysis of the two trajectories show that the value of the Lya-
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punov exponent depends on the initial conditions and the value of the pa-
rameter k. Notice the difference in the exponent for the two trajectories for
the same value of k. and notice the difference in the exponent for the same
initial conditions for different values of k. However, for larger values of k,
the dependence on the initial conditions seems to be lessened, as would be
expected by observing the phase-space portrait that was shown in Figure 2.4.
This can be seen by comparing the Lyapunov exponents for the two trajec-
tories considered for k = 2.0. For small values of k, the dependence of the
Lyapunov exponent on initial conditions is again reduced because most of
the orbits are then very regular, as indicated in these cases by the very small
exponent that approaches zero. The exponent grows with larger values of
k. indicating a greater exponential divergence of nearby trajectories. Fur-
thermore, the rate of convergence of the Lyapunov exponent to its limiting
value depends on how quickly the phase-space is expanding. which is equiv-
alent to how chaotic the orbit behaves. The faster the rate of expansion, the
faster the rate of convergence. Conversely, slower rates of expansion result in
slower rates of convergence. The possibility of the Lyapunov exponent not
converging is not seen in these trajectories, as data values regularly sampled
over the range of iterations indicate a gradual convergence to a single value.
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Chapter 5

Past, Present, and Future
Work

Although the Standard Map Machine performs well on the class of problems
that it was designed to solve, there are a number of flaws in the design of the
system, some of which require only minor modifications while others would
require a major redesign. In construction, the clock wires were cut to be of
equal length rather than to be as short as possible, resulting in transmission
line problems due to the length of the wires. This is much more of a problem
than clock skew given the size of the board, and hence wires should have been
made as short as possible. The multiplier and ALU are never used simultane-
ously and so can share control lines to reduce the necessary instruction word
width. The instruction format is lacking in a constant field, which means
that all constants must be loaded into data memory and cannot be placed
directly in the instruction stream. The condition code selector currently can
only select one bit of the four Weitek status bits. It should be replaced by
a PAL to allow all four status bits from the Weitek chips to be read as a
condition word rather than four condition bits. Register file locations and
microcode memory locations are not directly readable by the host machine,
which made debugging more difficult. A more serious problem is that there
is no efficient way to take the reciprocal of a number. The 1264/65 Weitek
chip set has no functionality for such operations. Since there is no way to
generate a good initial guess for the Newton's method (a good guess would
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be the number with its exponent negited), a table of initial guesses would
have to be stored in data memory to perform division. There is a newer
Weitek chip set that performs division and is supposedly compatible with
the 1264/65 floating point units, but their specifications have not yet been
examined.

At present, some of the problems with the machine mentioned above should
be corrected. Furthermore, minor adjustments, such as termination of vari-
ous wires, can be made to allow a faster cycle time. Investigating the pos-
sibility of using the newer Veitek floating point units could enhance the
functionality of SMM. Concerning software, it would be desirable to imple-
ment a compiler for SMM that would allow programming in a higher level
language. to give the user a more familiar programming methodology than
the one that is used in the language of the assembler.

From the experien- .- designing SMM for examining chaotic behavior, a
number of ideas f- ature work have come to mind. The first thing is given
that we now have such a machine, it is now possible to effectively investigate
the long-term behavior of nonlinear systems such as the standard map. The
problem mentioned in section 2 would be an intriguing question to research
usinp' SMM. The results of such a study would shed light upon an analogous
question in a real physical system concerning the orbits of the satellites of
Uranus. Another direction of research that can be pursued is in the direc-
tion of memory management in computer architectures. Although SMM is
fast, the number of data points that it can send to the host is eventually
bounded by the rate at which the host can store the data. This is fine for
computing such long-term behavior as Lyapunov exponents, in which many
computations are required for relatively few resulting data values, but for
problems such as plotting the phase-space portrait of the standard map in
real time, many data points are required and the speed of the host becomes
the limiting factor. It seems that the solution to this bottleneck will become
more and more necessary as greater processing power becomes available.
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Chapter 6

Conclusion

Studying chaotic behavior in nonlinear systems requires numerous calcula-
tions in order to simulate the behavior of such systems. The Standard Map
Machine is a special computer designed and implemented for the purpose
of performing these intensive computations, such as the computation of the
standard map for millions of iterations. The prototype implementation fits
on a small wire-wrap board and provides 2.5 MFlops of double-precision
computing power for the class of problems that it was designed to solve. Its
high-speed and high-precision performance are due to its simple architecture
specialized to the numerical computations required of nonlinear systems.

This backend computer has numerous advantages over conventional floating
point accelerators and math coprocessors in that almost all of the compu-
tations can be performed on SMM itself using its own fast microcontroller
rather than relying on the slower instruction control of the host machine,
thereby reducing the communication costs between the host and the backend
processor that heavily reduce the performance of other machines. Further-
more, unlike costly supercomputing power, SMM serves as a cost-effective
instrument that can be -completely dedicated for long periods of time as a
resource for our numeical simulations of nonlinear systems.

As technology improves, we claim that machines of a similar nature can be
designed and implemented as effective instruments for scientific computation.
1988 chip technology can already provide at least twice the performance of
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the floating point multiplier/ALU chip set used in SMM. The simpler ar-
chitecture of such special-purpose computers, tailored to numerical calcu-
lations, would allow greater optimization of operations than is feasible in a
more general-purpose machine, thereby providing the edge in high-speed and
high-precision performance necessary for intensive numerical computations.
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Appendix A

Control Bits of the SMM
Instruction Word

The following table shows the control fields of the SMM instruction word.
The first column gives the bits of the instruction word for the particular
control field. with the ordering of the control field bits being the same as
that of the instruction word. For instance, bit 73 of the instruction word
represents bit 0 of the condition code select control field. The second table
column gives the function of each control field and the third column gives the
possible range of values of each control field. The 1264/65 function bits, load
control bits, and unload control bits are described in detail in the Weitek
specifications.
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control bits functional description of bits possible values for control field

0 - 9 microaddress bits 1-10 0 - 1023
10 wait 0 for not waiting. 1 for waiting
11 regfile B-port write-enable 0 for not enable, 1 for enable

12 regfile A-port latch-enable 0 for not enable, 1 for enable
13 regfile B-port latch-enable 0 for not enable, 1 for enable

14 - 19 regfile A-port read-address 0 - 63
20 regfile A-port/latch output 0 for regfile, 1 for latch
21 - 26 regfile B-port write-address 0 - 63
27 - 32 regfile B-port read-address 0 - 63
33 regfile B-port output 0 for enable. 1 for not enable

34 - 39 1264 multipler function 0 - 63. see Weitek spec.
40 - 45 1265 alu function 0 - 63. see Weitek spec.
46 1264 load enable 0 for enable. 1 for not enable

47 1265 load enable 0 for enable, 1 for not enable
48 - 52 1264 load control 0 - 31, see Weitek spec.

53 - 57 1265 load control 0 - 31, see Weitek spec.

58 - 60 1265 unload control 0 - 7. see Weitek spec.
61 multiplier/alu select 0 for alu, 1 for multipler
62 regfile A-port write-enable 0 for not enable, 1 for enable
63 feed-through latch pulse 0 for do not latch, 1 for latch
64 SRAM write-enable 0 for not enable, 1 for enable
65 SMAR address latch pulse 0 for not enable, 1 for enable

66 - 71 regfile A-port write-address 0 - 63
72 Weitek-to-SRAM buffer 0 for enable, 1 for not enable
73 - 75 conditon code select A, B, C select cc0 - cc7
76 - 78 1264 unload control 0 - 7, see Weitek spec.

79 - 90 SRAM address 0 - 4095
91 default condition code 0 or 1, set by assembler
92 condition code latch pulse 0 for not enable, 1 for enable
93- 95 unused

Table A.1: Description of SMM Instruction Bits
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Appendix B

Design Schematics and Timing
Diagrams

The design schematics and timing diagrams for SMM and the host interface
are shown in the following figures. Figure B.1" gives a functional description
of the overall system with a detailed view of the system clock design showing
the clock generator as well as the derived write pulses and latch pulses. Note
that the clock buffers that were included in the actual construction to reduce
fanout are not shown in the diagram. Figure B.2 gives a detailed diagram
of the wire connections in the computation unit. Figure B.3 is a detailed
drawing of the microcontroller. There are three bits of the 96-bit instruction
word that are currently unused. Figure B.4 shows the hardware for the host
interface as well as the timing of interface signals. The signals from the host
are transmited from the breadboard interface card that is plugged into the
backplane of the host, through ribbon cables, to the control and data buffers.
The breadboard interface is not shown here. Figure B.5 shows the timing
analysis of the system.
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Figure B.1: Functional Description with System Clock
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Figure B.2: Computation Unit
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Appendix C

Sine and Cosine
Approximations

The sine function was approximated using the following series expansion:

si n(x) = x(s1 + x 2(s3 + X 2 (s5 +
X 2(,7 + ,2(s9 + X2(sl + S13XT2)))))) (C.1)

where the values of the coefficients were computed to be

97429332733154293903
l= 97429332733154296875

433019256591792251
S3 = 2598115539550781250

494879150388841
= 59385498046875000

46142578073

5 - 232558593750000

1599608879

580466250000000

63979907
sl = 2554051500000000
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64879
S 3 " 408648240000000

The cosine function was approximated using a similar series expansion:

cos(x) = co + x2 (c2 + x2 (c4 +

x2 (C6 + x2 (c8 + x2 (cIO + c12 x2)))))) (C.2)

where the values of the coefficients were computed to be

65608978271484371
Cl = 65608978271484375

259811553955073273
C3 =- 519623107910156250

22840576171747
c5 = 548173828125000

733154295719
C7 - 527871093750000

3519139237
C9 = 141891750000000

12795833
C11 = 46437300000000

56179
C1 3 = 27243216000000

Both expansions are accurate to 64-bit IEEE double precision full accuracy
for values of x in the interval [0, w/41. The coefficients are expressed as
rational numbers for maximum accuracy. Values of z outside of this range
are converted to equivalent the sine or cosine function whose argument falls
within this range. Note that for the standard map, 0 < x < 27r. A table of
conversions for the range of values of the argument to the sine function in
the standard map is given in the following table.
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Range Sine Cosine

0< x < sin(x) cos(x)
-4

X< <* <- (7-4~ ~ < z _-cs X) sin(- -x)
4 9 2 2

71' 3,. r 7
- < < -- cos(x- -) -sin(x2-)

37
4- < X < r sin(r, - x) - cos(7r - X)

57
7r < X < -sin(x - 7r) -cos(x - 7r)

-4

57r 37r 37r 37r
4 - 2 -cos(y-x) -sin(j--x)

37r 3rr

2r <4 -cos(x- 3" sin(x- 3)

7wr
- < x < 27r -sin(2r - x) cos(2r- z)

Table C. 1: Sine and Cosine Conversions for Values of x
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Appendix D

Program for Calculating
Lyapunov
Exponents

The following Scheme programs was used to interface to SMM while it was
running the Lyapunov exponents program:

(define (wait-loop)
(if (even? (wait))

(wait-loop)))

(define init 5)

(define (lyp k x y renorm)
(define dx 1.0)
(define dy 0.0)
(define t 0)
(define twopi (* 8 (atan 1)))
(define twopi-I ( 1 (* 8 (atan 1))))
(define sign 0)
(define sl ( 97429332733154293903 97429332733154296875))
(define s3 (I -43301925591792251 2598115539550781250))
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(define sS ( 494879150388841 59385498046875000))
(define s7 ( -46142578073 232558593750000))

(define s9 ( 1599608879 580466250000000))

(define s1l ( -63979907 2554051500000000))
(define s13 ( 64879 408648240000000))

(define cO ( 65608978271484371 65608978271484375))
(define c2 ( -259811553955073273 519623107910156250))

(define c4 ( 22840576171747 548173828125000))

(define c6 ( -733154295719 527871093750000))

(define c8 ( 3519139237 141891750000000))

(define c1O ( -12795833 46437300000000))

(define c12 ( 56179 27243216000000))

(define one 1)

(define i 0)

(define pi (* 4 (atan 1))

(define xpif (* 1.5 pi))

(define fpif (* 1.25 pi))

(define tpif (* .75 pi))

(define pit (* .5 pi))

(define pif (* .25 pi))
(define spif (* 1.75 pi))

(define d 1)

(define logd 0)
(define (run-loop)
(if (even? (wait))

(run-loop)
(begin

(set! t (upload-data 92))

(set! d (sqrt (upload-data 80)))

(set! x (upload-data 84))
(set! y (upload-data 86))
(set! dx ( (upload-data 88) d))

(set! dy ( (upload-data 90) d))

(download-data "((88 *dx) (,dy)))

(done)

(set! logd (+ logd (log d)))

(display t)

(display " "')

(display ( logd t))
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(display" )

(display x)
(display " "
(display y)
(newline)
(run-loop)

(chasm-file "lyp-board")
(download-code *chasm-bits*)
(start-board 0)
(wait-loop)
(download-data '((82 .k) (,x) (,y) (,dx) (,dy) (,t) (,renorm)))
(download-data '((96 ,twopi-1) (,twopi)))
(download-data '((100 ,sl) (,s3) (,sS) (,s7) (.s9) (,sll) (.s13))
(download-data '((114 ,cO) (,c2) (.c4) (,c6) (,c8) (,clO) (,c12))
(download-data '((128 ,one) (,i) (,sign)))
(download-data '((134 ,xpif) (,fpif) (,pi) (,tpif) (,pit) (,pif) (,spif)))
(download-data '((148 ,init)))
(done)
(newline)
(display "start with k, x, y, renorm values: "

(display k)
(display ", ")

(display x)
(display ", 11)

(display y)
(display "1, "1)

(display renorm)
(riewline)
(run-loop))

(define (slyp k x y renorm)
(newline)
(stop-clock!)
(define dx 1.0)
(define dy 0.0)
(define t 0)
(define logd 0)
(define d)
(define (run-loop)
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(if (even? (wait))
(run-loop)
(begin

(set! t (upload-data 92))
(set! d (sqrt (upload-data 80)))
(set! x (upload-data 84))

(set! y (upload-data 86))

(set! dx ( (upload-data 88) d))

(set!o dy (/ (upload-data 90) d))

(download-data "((88 ,dx) (,dy)))

(done)
(set! logd (+ logd (log d)))
(display t)

(display " ")
(display ( logd t))
(display " ")
(display x)

(display " ")
(display y)
(newline)
(run-loop))))

(start-board 0)
(wait-loop)
(download-data *((82 ,k) (,x) (,y) (,dx) (,dy) (,t) (,renorm)))

(done)
(display "start with k, x, y, renorm values: ")

(display k)
(display ", ")
(display x)
(display ", ")
(display y)
(display ", ")
(display renorm)
(newline)
(run-loop))
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The procedure lyp assembles the program stored in the file "lyp-board.scm",
loads the resulting instruction bits into the SMM microcode memory, and
stores the appropriate data values into data memory using the appropriate
download commands. Note that the program starts SMM and waits until
it is in a waiting state before it downloads data to the board, using the
procedure wait-loop. Data is downloaded to the board after the machine
has been started in order to guarantee that the pipeline has been cleared of
extraneous old data memory write instructions that may erase the new data
that has been stored. SMM then iterates the variational equations with the
standard map renorni times using the initial values of k, x, and y, waits for
the host to pick up the result, and then iterates another renorm times with
renormalized dx and dy values. The Scheme program processes the data to
be displayed. renormalizes values, tells SMM that it is done accessing the
data memory so that SMM can proceed, and displays the result. The data is
read from the data memory page address given by init. For example, since
Mit is equal to 5 and the value of t is stored by the microcode program, as
shown below, in data memory location 12 on that page, data memory address
92 (16 * 5 + 12) must be read for the value of t. The program continues to
loop until the user interrupts it. lypl does the same thing as lyp except that
it does not reload the microcode or series approximation coefficients. lypl
reduces some of the initial overhead so that the user does not have to wait for
the microcode program to be assembled and downloaded every time. It can
be used after lyp has been used once so that the necessary bits have been
loaded into SMM. The assembler program that is used by SMM to calculate
the standard map and the Lyapunov exponents program is listed below.

;; this is the standard map program for Lyapunov exponents on SMM

(clear-wait-bit) ;;; makes sure wait bit is cleared
(alu-load-mode lbOO0000) ;;; loads proper mode of operation for alu
(alu-load-mode ObO11111)
(alu-load-mode #blO0010)
(mul-load-mode #bOOOOOO) ;;; loads proper mode of operation for multiplier
(mul-load-mode #bOlO110)
(mul-load-mode #blOOOO)
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(wait) ;;; allows data to be loaded after pipe cleared

(da (r 0) (s 82)) ;;; k
(da (r 2) (s 84)) ;;; x
(da (r 4) (s 86)) ;;; y
(da Cr 10) (s 92)) ;;; t

(da (r 12) (s 94)) ;;; n

(da (r 14) (s 96)) ;;; twopi-l

(da (r £6) (s 98)) ;;; twopi
(da (r 18) (s 100)) ;;; sl

(da (r 20) (s 102)) ;;; s3

(da (r 22) (s 104)) ;;; s5

(da Cr 24) (s 106)) ;;; s7

(da Cr 26) (s 108)) ;;; s9

(da (r 28) (5 110)) ;;; Sli
(da (r 30) (s 112)) ;;; s13

(da (r 32) (s 114)) ;;; cO

(da (r 34) (s 116)) ;;; c2

(da (r 36) (s 118)) ;;; c4

(da (r 38) (s 120)) ;;; c6

(da (r 40) (s 122)) ;;; c8

(da (r 42) (s 124)) ;;; CO

(da (r 44) (s 126)) ;;; c12

(da (r 46) (s 128)) ;;; one

(da (r 48) (s 130)) ;;; i

(da (r 50) (s 132)) ;;; sign

(:newloop da Cr 6) (s 88)) ;;; dx

(da (r 8) (s 90)) ;;; dy

(:loop da (r 60) (s 148)) ;; memory latch offset

(da (none) (f->is (r 60))) ; latch page address

(da-(r 62) (s 140)) ;', 3pi/4

(da (r 60) (s 136)) ;;, Spi/4

(da (none) (cmp (r 2) (r 58)) (lcc)) , test x > 7pi/4

(da (r 68) (a 134)) , 6pi/4

(da (none) (crp (r 2) (r 58)) (lcc)) , test x > 6pi/4

(da (none) (crp (r 2) (r 60)) (Icc)) , test x > Spi/4

(da (none) (crp (r 2) (r 52)) (icc)) test x > pi
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(da (none) Ccmp (r 2) Cr 62)) (icc)) ;;test x > 3pi/4
(da Cr 62) C- Cr 16) Cr 2)) (if ccl :poly7))
(da (none) Ccmp Cr 2) Cr 54)) (icc)) ;;test x > pi/2
Cda Cr 62) C-(r 2) Cr 58) (if ccl :poiy6))
(da Cr 62) C-(r 58) Cr 2)) Cif ccl :poiyS))
Cda Cr 62) C-(r 2) Cr 52)) Cif ccl :poiy4))
Cda (none) (cmp Cr 2) Cr 56)) Clcc)) ;;test x > pi/4
Cda Cr 62) C-(r 52) Cr 2)) (if ccl :poly3))
Cda Cr 62) C-(r 2) Cr 54)) Cif ccl :poiy2)).
Cnop)
(nop)
(nop)
Cnop)
Cnop)
(nop)
(da Cr 62) (- Cr 54) Cr 2)) (if ccl :poiyl))

C:poiyO da Cr 62) Ci Cr 2))
(nop)
(nap)
Cda Cr 58) (* Cr 0) Cr 6)) (goto :sin-cos)) ;;compute kedx
C:poiyl nop)
(nop)
Cda Cr 58) (* Cr 0) Cr 6)) (goto :cos-sin)) ;;compute k*dx
C:poiy2 nop)
Cnop)
(da Cr 58) (-* Cr 0) Cr 6)) Cgoto :cos-sin)) ;;compute -kedx
C:poiy3 nop)
(nop)
(da Cr 58) (-* Cr 0) Cr 6)) (goto :uin-cos)) ; compute -k*dx
C:poiy4 nop)
(nop)
(da Cr 58) (-* Cr 0) Cr 6))M; compute -k*dx
(da Cr 50) Ci Cr 46)) (goto :-sin-cou)) no mt sign to be negative'
(:polys nop)
(nop)
Cda Cr 58) (-* Cr 0) Cr 6);; compute -k*dx
(da Cr 50) Ci Cr 46)) (goto :-cos-uin)) s; et sign to be negative
C:poiy6 nop)
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(nop)
(da (r 58) (* Cr0) (r 6))) ;; compute k*dx

(da (r 50) (i (r 46)) (goto :-cos-sin)) ;;; set sign to be negative

(:poly 7 nop)
(nop)
(da (r 58) (* (r 0) (r 6))) ;;; compute k*dx

(da (r 50) (i (r 46)) (goto :-sin-cos)) ;;; set sign to be negative

(:sin-cos nop),.
(nop)
(:-sin-cos nop)
(nop)
(nop)
(nop)
(:funct nop)
(nOp)
(da (r 60) (* Cr 62) (r 62))) ;;; compute x2

(nop)
(nop)
(da (r 56) (* Cr 62) (r 18))) ;;; compute sl*x

(da (none) (cmp (r 50) (r 46)) (Icc)) ;;; tests sign for plus or minus

(nop)
(nOp)
(nop)

(nop)
(da (latch) (* Cr 60) (r 30))) ;;; compute s13*z 2

(nop)
(nop)
(da (latch) (* Cr 60) (r 44))) ;;; compute c12*X2

(nop)
(nop)
(da ((latch) (r 54)) (* (r 62) (r 60))) ;;; compute x 3

(da (latch) ( (latch) (r 28))) ;;; compute lil + s13*z2

(nop)
(nop)
(da (latch) ( (latch) (r 42))) ;;; compute CIO + c12*x2

(nop)
(nop)
(da (latch) (* (latch) (r 20))) ;;; compute s3*z 3
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(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute (s11 + s13*x2) * T2

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute (d1O + c12* 2) * X2

(da (r 56) (+ (latch) (r 56))) ;;; compute sl*x + s3*x3

(nop)
(nop)
(da (latch) (+ (latch) (r 26))) ;;; compute s9 + sin-poly
(nop)
(nop)
(da (latch) (+ (latch) (r 40))) ;;; compute c8 + cos-poly

(nop)
(nop)
(da (r 54) (* Cr 60) (r 54))) ;;; compute X5

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute sin-poly * x2

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute cos-poly * x2

(nop)
(nop)
(da (latch) (* Cr 34) (r 60))) ;;; compute c2*x 2

(da (latch) (+ (latch) (r 24))) ;;; compute s7 + sin-poly
(nop)
(nop)
(da (latch) ( (latch) (r 38))) ;;; compute c6 + cos-poly
(nop)
(nop)
(da (r 62) ( (latch) (r 32))) ;;; compute cO * c2*x 2

(nOp)
(nop)
(da (latch) C* (latch) (r 60))) ;;; compute sin-poly * x2

(nop)
(nOp)
(da (latch) (* (latch) (r 60))) ;;; compute coo-poly * X2

(nop)
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(nop)
(da (r 60) (* (r 60) (r 60))) ;;; compute z

(da (latch) (+ (latch) (r 22))) ;;; compute sS + sin-poly

(nop)
(nOp)
(da (latch) (+ (latch) (r 36))) ;;; compute c4 + cos-poly

(nop)
(nop)
(da (r 48) (+ (r 46) (r 48))) ;;; increment i

(nop)
(nop)
(da (latch) (* (latch) (r 54))) ;;; compute sin-poly * x

5

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute cos-poly * x

4

(nOp)
(nop)
(nOp)
(nOp)
(da (latch) (+ (latch) (r 56))) ;;; finish computing sin-poly

(nop)
(nop)
(da (latch) (+ (latch) (r 52))) ;;; finish computing cos-poly

(nop (goto :result))

(:cos-sin nop)

(nop)
(:-cos-sin nop)
(nop)
(nop)
(nop)
(nop)
(nop)
(da (r 60) (* (r 62) (r 62))) ;;; compute z2

(nop)
(nop)

(da (r 66) (U Cr 62) (r 18))) ;;; compute sl*x
(da (none) (cmp (r 50) (r 46)) (cc)) ;;; tests sign for plus or minus

(nop)
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(nop)
(nop)
(nop)
(da (latch) (* Cr 60) (r 44))) ;;; compute c12*z 2

(nop)
(nop)
(da (latch) (* Cr 60) (r 30))) ;;; compute s13*z2

(nop)
(nop)
(da ((latch) (r 54)) (* (r 62) (r 60))) ;;; compute x3

(da (latch) ( (latch) (r 42))) ;;; compute cO + cl2*x 2

(nop)
(nop)
(da (latch) (+ (latch) (r 28))) ;;; compute all + sl3*x 2

(nop)
(nop)
(da (latch) (* (latch) (r 20))) ;;; compute s3*x 3

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute (cdO + cl2*x2 ) * T2

(nop)
(nop)
(da (lat' (* (latch) (r 60))) ;;; compute (ell + s13*x2) * T2

(da (r 56) (+ (latch) (r 56))) ;;; compute sl*x + s3*x3

(nop)
(nop)
(da (latch) (+ (latch) (r 40))) ;;; compute c8 + coo-poly
(nOp)
(nop)
(da (latch) (+ (latch) (r 26))) ; compute 89 + sin-poly

(nOp)
(nOp)
(da (r 54) (* Cr 60) (r 54))) ;;; compute X5

(nop)
(nOp)
(da (latch) (* (latch) (r 60))) ;;; compute coo-poly * X2

(nOp)
(nOp)
(da (latch) (* (latch) (r 60))) ;;; compute sin-poly * X2
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(nop)
(nop)
(da (latch) (* Cr 34) (r 60))) ;;; compute c2*x2

(da (latch) (4 (latch) (r 38))) ;;; compute c6 + cos-poly

(nop)
(nop)
(da (latch) (+ (latch) (r 24))) ;;; compute s7 + sin-poly

(nop)
(nop)
(da (r 52) ( (latch) (r 32))) ;;; compute cO + c2*x

2

(nop)
(nop)

(da (latch) C* (latch) (r 60))) ;;; compute cos-poly * x
2

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute sin-poly * 2

(nop)
(nop)
(da (r 60) (* Cr 60) (r 60))) ;;; compute z 4

(da (latch) (* (latch) (r 36))) ;;; compute c4 + cos-poly

(nop)
(nOp)
(da (latch) (4 (latch) (r 22))) ;;; compute s5 + sin-poly

(nop)
(nop)
(da (r 48) ( (r 46) Cr 48))) ;;; increment i

(nop)
(nop)
(da (latch) (* (latch) (r 60))) ;;; compute cos-poly * x

4

(nop)
(nOp)
(da (latch) (e (latch) (r 54))) ;;; compute sin-poly * X

5

(nOp)
(nop)

(nop)
(da (latch) ( (latch) (r 52))) ;;; compute cos-poly for sine

(nop)
(nOp)
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(da (latch) (+ (latch) (r 56))) ;;; compute sin-poly for cosine

(nop (goto :result))

(:result nop)

(da (none) (none) (if ccO :no-negate))

(nop)
(nop)
(da (latch) (-* (latch) Cr 0)) (goto :next)) ;;; compute -k * sin x
(:no-negate nop)

(nop)

(da (latch) (* (latch) (r 0))) ;;; compute k * sin x
(:next nop)

(nop)
(da (latch) (* (latch) (r 58))) ;;; compute /- k * cos x * dx

(nop)

(nop)
(da (r 50) (- Cr 50) (r 50))) ;;; set sign to zero
(da ((latch) (r 4)) (+ (latch) (r 4))) ;;; compute new y value

(nop)
(nop)
(da ((latch) Cr 8)) ( (latch) (r 8))) ;;; compute new dy value

(nop)

(nop)

(da (none) (cmp (r 48) (r 12)) (lcc)) ;;; test i<n

(nop)

(nop)
(da (r 2) ( (latch) (r 2))) ;;; compute new x value

(nop)

(nop)
(da (r 6) ( (latch) (r 6))) ;;; compute new dx value

(nop)
(nop)
(da (r 62) (* Cr 4) (r 14))) ;;; compute y / 2pi
(nOp)

(nop)
(da r 68) (* Cr 8) (r 8))) ;;; compute dy * dy

(nOp)
(nop)
(da (latch) (* Cr 2) (r 14))) ;;; compute x / 2pi
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(alu-load-mode b001100) ;;; change rounding mode

(nOp)

(da (latch) (f->i (r 62))) ;;; floor (y / 2pi)

(nOp)
(nop)
(da Cr 62) (* (r 6) (r 6))) ;;; compute dx * dx
(da (latch) (f->i (latch))) ;;; floor x I 2pi)
(nop)
(nOp)
(nOp)
(nop)

(da (latch) (i->f (latch)))
(nop)

(nop)

(nop)

(nOp)

(da (r 56) (i->f (latch)))

(nop)
(nOp)
(nOp)
(nop)
(da (r 60) (* (latch) (r 16))) ;;; floor-y * 2pi

(nop)

(nop)

(da (r 54) (s 142)) ;;; pi/2

(nOp)
(nOp)
(da (r 56) ( (r 56) (r 16))) ;;; floor-x * 2pi

(alu-load-mode *bOOOOOO) ;;; return to normal rounding mode
(nop)
(da (r 60) (4 (r 62) (r 58))) ;;; compute dx*dx * dy*dy

(da (r 4) (- (r 4) (r 60))) ;;; calculate new y value with mod 2p

(da (r 52) (a 138)) ;;; pi

(da (r 58) (s 146)) ;;; 7pi/4

(da. (r 2) (- (r 2) (r 56))) ;;; calculate new x value with mod 2p

(da (r 56) (a 144)) ;;; pi/4
(da (none) (none) (if cc0 :loop)) ;;; if ifn, then go back to :loop

(da (none) (cmp (r 60) (r 46)) (lcc)) ;;; test to see if dx*dx + dy*dy > 1

(da ((r 10) (1 12)) (+ (r 10) (r 48))) ;;; t t + i
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(da (r 48) (- (r 48) (r 48))) ;;; clear i
(da (s 0) (i (r 60))) ;;; write dx*dx + dy*dy to memory
(da (s 14) (i (r 12))) ;;; write n to memory
(da (s 4) (i (r 2))) ;;; write x to memory
(da (s 6) (i (r 4))) ;;; write y to memory
(da (s 8) (i (r 6))) ;;; write dx to memory
(da (s 10) Ci (r 8))) ;;; write dy to memory
(da (none) (none) (if ccl :update-loop)) ;;; if > then save walues
(nop)
(nop)
(nop) ;;; nops needed to guarantee
(nop) w writes to data memory completed

(nop)
(nop)
(nop)
(nop)
(da (none) (none) (goto :loop))
( :update-loop nop)
(wait)
(da (none) (none),(goto :nevloop))
)

There are a number of places in the assembler code for computing the Lya-

punov exponents where there are unused instruction cycles consisting of sev-
eral consecutive nop instructions. Additional operations can be performed

during these instruction cycles if desired. Note that in order to calculate the
floor function for modulo 27r, the rounding mode of the alu is changed in
the middle of the program from the default rounding mode of rounding to

nearest significand to the rounding mode of rounding toward negative infin-

ity, according to the information provided in the Weitek specifications. This

program only calculates one trajectory of the standard map. Although there
is a great deal of instruction interleaving present, the trigonometric functions

are not calculated using the minimum number of operations in order to make
use of some unused instruction cycles. More efficient use of the machine can

be made by computing three trajectories simultaneously.
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Appendix E

Interface Commands

The address space of the backend computer is mapped into the address space
of the HP Series 200 computer system that serves as the host. Scheme
procedures have been defined that can read and write 16-bit words to address
locations of the board:

;; rc takes an address value between #bOOOOOOOOOOOOOO and
;; #blllllllllllllll and returns the bit value at that address location.

(rc address)

;; wc takes an address value between #bOOOOOOOOOOOOOO and
;; #b111111111111111 and a data value between #bOO00000000000000 and
;; #b1111111111111111 and writes the data value to that address location.

(wc address data)

Reading and write to different address locations perform different functions
on the board. The following is a list of the function of each of these addresses.

;; loadO-1S loads instruction bits 0 through 15 into the aicrocode loader.

(define (loadO-15 instruction-bits)
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(wc #bO10100000000000 instruction-bits))

;; load16-31 loads instruction bits 16 through 31 into the microcode loader.

(define (load16-31 instruction-bits)
(wc #bO10000000000000 instruction-bits))

;; load32-47 loads instruction bits 32 through 47 into the microcode loader.

(define (load32-47 instruction-bits)
(wc #bOO1100000000000 instruction-bits))

;; load48-63 loads instruction bits 48 through 63 into the microcode loader.

(define (load48-63 instruction-bits)
(wc #bOO1000000000000 instruction-bits))

;; load64-79 loads instruction bits 64 through 79 into the microcode loader.

(define (load64-79 instruction-bits)
(wc #bOO0100000000000 instruction-bits))

;; load8O-92 loads instruction bits 80 through 92 into the microcode loader,
and downloads the instruction word in the microcode loader to the micromemory.

;; Instruction bits 93 through 95 are currently unused.

(define (load8O-92 instruction-bits)
(wc #bOO0000001111111 instruction-bits))

;; start-board starts the machine at the last loaded microinstruction, which
;; should start the machine at the beginning of the program in micromemory.

(define (start-board value)
(wc #bOll000000000000 value))

;; stop-cloct) interrupts the board by stopping the system clock high.

(define (stop-clock!)
(wc #blOO000000000000 0))
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;; wait is used to see if the machine is done processing and is in a waiting
;; state by reading the wait bit, thus determining if the host to access is

;; allowed to access memory. If the value returned is odd, the machine is
;; not done processing. If the value returned is even, then the machine is

;; in a waiting state and memory can be accessed by the host.

(define (wait)
(rc #blOO000000000000))

;; sram-high-offset gives the lowest data high-address location and
;; sram-low-offset gives the lowest data low-address location.

(define sram-high-offset #bl01000000000000)
(define sram-low-offset #bllO000000000000)

;; done tells the board that the host is done accessing memory, which allows

;; the machine to continue processing.

(define (done)
(wc #blllO00000000000 0))
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Appendix F

Assembler Use

The assembler uses a register-transfer language that specifics for each in-
struction the "register- locations from which to read the operands for the
given operation and the locations to which to write the result of the opera-
tion. There are three possible locations for data to be read from or written
to: the data memory. the register file., and the feed-through latch. These are
represented in assembly language as

;; data memory location saddress, where saddress is between 0 and
;; 4095, inclusive. The two formats are equivalent.

(s saddress)
(sram saddress)

;; register file location raddress, where raddress is between 0
;; and 63, inclusive. The three formats are equivalent.

(r raddress)
(reg raddress)
(register raddress)

;; feed-through latch

(latch)
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Single and double precision operations are possible, but in double precision,
addresses must be even because the assembler uses even number boundaries.
In terms of instruction cycles, one single precision operation requires one
instruction cycle, but one double precision instruction is converted by the
assembler into the equivalent set of two single precision instructions, thus
requiring two instruction cycles. We will deal mostly with double precision
operations here.

There are four basic instruction formats allowed:

;; No operation. Requires one instruction cycle.

(nop)

;; Loads register file location raddr with data in data memory location
;; saddr. da instructions always require two instruction cycles.

(da (r raddr) (s saddr))

This is the main instruction. Operation oper is performed on the
;; operands located in register file locations raddrl and raddr2 and
;; assigns the result to register file location raddr. The first
;; operand is the A-port operand and the second operand is the B-port
;; operand. The locations for data operands and result destination
;; can be the same location or different ones. The instruction stream then
;; proceeds to the instruction marked by :label. There are a number of
;; optional fields and variations of the listing shown here.

(da Cr raddr) (oper Cr raddrl) (r raddr2)) (goto :label))

;; Tells the host machine that SMM is in a wait loop that promises not
;; to access data memory so that the host can access it. Note that this
;; command is an assembly language instruction and is different from the
;; interface instruction wait.

(wait)
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Although loading the register file from data memory and the execution of
other operations can actually be performed together, the current assembler
does not have that functionality. There has been some initial work done to
provide the functionality, but it has not yet been completed due to the time
constraints on this project.

The main instruction used has a number of variations and options that can
be combined. Here are a number of the possible combinations:

;; Assigns result to multiple destinations. Since the goto field has
;; been omitted, the program would proceed to, the next instruction.

(da ((s saddr) (r raddr) (latch)) (oper (r raddrl) (r raddr2)))

;; First operand can be from the latch instead of register file. The
;; condition bits of the result are latched by using 1cc.

(da (s saddr) (r raddr)) (oper (latch) (r raddr2)) (Icc))

;; Operation with one operand. The condition bit ccl is tested, and
;; if it is equal to one, a branch occurs to the instruction marked by
;; :foo.

(da (s saddr) (oper (latch)) (if ccl :foo))

;; Condition bits of result are latched and the program goes to the
;; instruction marked by :do.

(da (r raddr) (oper (r raddrl) (r raddr2)) (Icc goto :do))

;; Equivalent to nop but allows use of branching field. The location
;; none serves as a place holder for the assembler. No actual
;; location is accessed.

(da (none) (none) (goto :loop))
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Except for the nop instruction which is a single precision operation, all of the
instructions that have been listed so far are double precision instructions, as
indicated by the "da" at the beginning of the instruction. For single precision
instructions, "a" must be used. A double precision instruction is expanded
into two single precision instructions and hence takes as long to execute as
two single precision instructions (two instruction cycles).

The rules for programming with the assembler are listed below. A sample
program is given in Appendix D as an example of the rules of programming
the Standard Map Machine.

" Use of labeling: An instruction is given a label so that it can be
referred to in a the program as in a goto or if clause. The label must
have a colon as the first character of the label name.

" Use of multiplier/alu: The load mode for the multiplier and the alu
must be loaded at the beginning of the program. It may be changed
later to change the rounding mode of the chips. Results of multiply
operations are sent ten instruction cycles after the execution of the in-
struction to the appropriate destination to be written. Thus the new
result will not be available for use until twelve instruction cycles later.
For the alu, the result is sent twelve instruction cycles after the exe-
cution of the instruction so that the new result is not available until
fourteen instruction cycles later. Using the latch as the destination is
a special case, as mentioned below. Concerning instruction spacing, at
least two instruction cycles are required between double precision mul-
tiplier operations, and if two multiplier operations are within twelve
instruction cycles of one another, they must be separated by either
two, six, or ten instruction cycles due to the pipelining requirements of
the Weitek chips. Other separations will cause one of the operations
to fail. Double precision alu operations can be run without separation
in between them, but if there is separation between two alu operations
and they are within fourteen cycles of one another, the separation must
be an even number of instruction cycles. When interleaving the alu and
multiplier operations, the only additional constraint is that a multiplier
operation must have at least two instruction cycles between it and the
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previous alu operation. The currently available multiply operations are
• and -*. The currently available alu operations are +, -, cmp, f- >i,
i- >f. and f- >is. The * operation does straightforward multiplication

and the -* operation multiplies two numbers and negates the result.
The + operation adds two numbers, the - operation subtracts the sec-
ond operand from the first, the cmp operation compares two numbers
(see instructions for branching), the f- >i operation converts a floating
point number to an integer while i- >f does the. opposite, and f- >is
generates the page write address (see instructions for writing data to

data memory).

* Branching on conditions: Icc latches the condition code bits coming
out of the Weitek chips resulting from the operation performed. For a
double precision instruction, the latching occurs on the first single pre-
cision instruction that it is expanded into. The condition codes can be
tested using the if clause twelve cycles after the icc has been performed

(i.e. there must be the equivalent of at least twelve nops between the
icc and the if clause). The if clause tests the specified condition code

bit and goes to the specified instruction if the condition is true. (Since
the if clause is placed in the second single precision instruction resulting
from the expansion of a double precision instruction and the Icc clause
is placed in the first single precision instruction that results from the
expansion of a double precision instruction, the spacing between double
precision instructions can be just ten nops rather than twelve.) Thus

far, only the alu comparison instruction has been provided by the as-
sembler, although it is simple to add functionality. The comparison
function cmp takes two operands as was shown above. To test if the
first operand is less than the second, latch the condition code bits and
test if ccO is true. If the test is true, then the first operand is less than

the second. To test if the first operand is greater than the second, latch
the condition code bits and test if ccl is true. If the test is true, then
the first operand is greated than the second.

9 Use of feed-through latch: The feed-through latch is used for fast
serial computations by allowing the result coming out of the multi-
plier/alu to be directly fed back into it as the A-port input. The latch
is used in the same way as a register file location, except that precise
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timing is required. The result of a multiplier operation must be used
exactly ten cycles later and the result of an alu operation must be used
exactly twelve cycles later. Otherwise, the instruction will fail and the
assembler will give a warning. Note that if there is a branching instruc-
tion in between the instruction that uses the latch as a destination and
the instruction that uses the results from that latch as an operand, the
assembler may still give a warning even though the instructions are
separated by the right number of cycles.

Reading and writing data to data memory: Data is read from
data memory from the address location specified in the instruction.
The range of addresses is even numbers 0 through 4094 for double
precision data values. Data cannot be read ten cycles after a multiplier
operation that writes the result to memory or twelve cycles after an
alu operation that writes the result to memory. (This is also true for
register file locations.) Data is written to data memory from the address
location specified in the instruction and the page address calculated in
the last f- >is operation. Page addresses range from 0 to 255 while
write address locations for each page range from 0 to 14, even numbers
only for double precision data values.

Instructions for assembling microcode, and downloading microcode and data
to SMM have been implemented for use with the assembler. They are given
below.

;; chasm-file assembles the list found in "file.scm'' into the
;; instruction bits *chasm-bits*. Note that "file.scm" must be in
;; list format.

(chasm-file "file'')

;; download-code downloads the instruction bits in *chasm-bits* to SHM.

(download-code *chasm-bits*)

;; download-data downloads data-i in 64-bit IEEE floating point
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;; format to data memory location-i. Note that locations must be even

;; numbered ranging between 0 and 4094. If no location is specified,
;; data is written into the next address location. The initial
;; default location is address 0.

(download-data '((addrl datal) (addr2 data2) ...
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